(3x^2+8)-(7x^2-11)=0

Simple and best practice solution for (3x^2+8)-(7x^2-11)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+8)-(7x^2-11)=0 equation:



(3x^2+8)-(7x^2-11)=0
We get rid of parentheses
3x^2-7x^2+8+11=0
We add all the numbers together, and all the variables
-4x^2+19=0
a = -4; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-4)·19
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*-4}=\frac{0-4\sqrt{19}}{-8} =-\frac{4\sqrt{19}}{-8} =-\frac{\sqrt{19}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*-4}=\frac{0+4\sqrt{19}}{-8} =\frac{4\sqrt{19}}{-8} =\frac{\sqrt{19}}{-2} $

See similar equations:

| -104+13x=26 | | (x-3)=x(x-5) | | x=1AX3A | | -20=y/0.3 | | c|2+3=10 | | 72+x=125-38 | | t-3-6=11 | | 5/12=x-2/24 | | (x-7)/8=1 | | 4/7(x-7)=4 | | 5/12=x=2/24 | | 6x-7-4x=2x-11-5 | | 7n=3n+24 | | 12+5x=9x+7 | | 8r(2r−3)=0 | | -4+3x=-19+2x | | (x+10)/4=8 | | 12x-1=10x-3 | | 18=10u | | .3x+2x=3 | | 46(27)^x=414 | | .33x+.2x=32 | | 9(6+2a)=-(24a) | | 4+3x=19+2x | | 3k=10 | | .5x+.33=25 | | 2/3x1/3x2=5 | | n2–64=0 | | b/7+1/6=19 | | 2/3x+4/6=4 | | (5x+2)/3=(3x+2)/2 | | 16n2+82n+10=0 |

Equations solver categories